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Abstract

 

The aim of the present study was to discover how intergenerational undernutrition affects the growth of major

and minor functional cranial components in two generations of rats. Control animals constituted the parental

generation (P). The undernourished generations (F1 and F2) were fed 75% of the control diet. Animals were X-rayed

every 10 days from 20 to 100 days of age. The length, width and height of the major (neurocranium and splanch-

nocranium) and minor (anterior-neural, middle-neural, posterior-neural, otic, respiratory, masticatory and alveolar)

cranial components were measured on each radiograph. Volumetric indices were calculated to estimate size

variations of these components. Data were processed using the Kruskal–Wallis and Kolmogorov–Smirnov tests for

two samples. Impairment in splanchnocranial and neurocranial growth was found, the latter being more affected

than the former in F1. Comparison between F2 and F1 animals showed cumulative effects of undernutrition in both

major and minor components (anterior-neural, respiratory, masticatory and alveolar in males, and middle-neural

and respiratory in females). Such differential effects on minor components may reflect a residual mechanical strain

resulting from the linkage between components. This phenomenon was clearly observed in the neurocranium and

could be understood as an adaptive response to the demands of the associated functional matrices.
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Introduction

 

Intergenerational factors were defined by Emanuel

(1986) as those factors, conditions, exposures and environ-

ments experienced by one generation that relate to

the health, growth and development of the next. The

existence of intergenerational factors has been reported

in both humans (Emanuel et al. 1992; Stein & Lumey, 2000;

Stein et al. 2004; Veena et al. 2004) and rats (Stewart

et al. 1973; Zamenhof & van Marthens, 1978; Pessoa

et al. 2000; Cesani et al. 2001; Pucciarelli et al. 2001).

According to Emanuel (1997), humans who grow

at below-average rates have small organs, primarily

because of a reduced cytoplasmic/nuclear ratio and/or

reduced cell number, resulting in long-term physiological

consequences.

Chronic undernutrition is the most common type of

malnutrition in human populations (Resnick & Morgane,

1984). Its effects may go beyond the generation under

stress (Kenney & Barton, 1975). Therefore, nutritional

deficiencies can be regarded as intergenerational

factors. We recently reported that under certain experi-

mental conditions, chronic generational undernutrition

results in a cumulative growth deficit of the two major

components of the skull: the neurocranium and face

(Cesani et al. 2003). According to the functional cranial

theory (Moss & Young, 1960; Moss, 1973), the mammalian

skull comprises several discrete units called functional

cranial components (FCCs). These FCCs vary during growth

according to particular patterns, which in turn make

up the general pattern of the entire skull. Each FCC is

composed of a functional matrix (FM) and a skeletal

unit (SKU). The FM includes all the elements (tissues,
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organs, functional spaces, etc.) necessary to perform

a function. The SKUs support and protect specific FMs

(Moss, 1973), reflecting the functional demands imposed

by the growth of the related soft-tissue structures. In

the rat, the neurocranium and splanchnocranium

consist of minor components (anterior-neural, middle-

neural, posterior-neural, otic, respiratory, masticatory

and alveolar) that reflect specific functions. Modi-

fications of major components may involve changes

in all minor components or selected components.

The aim of this study was to determine how intergen-

erational undernutrition affects the growth of major

and minor cranial components in two generations of

rats.

 

Materials and methods

 

Experimental groups

 

One hundred and twenty-five Wistar rats (

 

Rattus

norvegicus albinus

 

) raised at the Bioterio of the Centro

de Investigaciones en Genética Básica y Aplicada (CIGEBA,

Facultad de Ciencias Veterinarias, UNLP) were maintained

as an outbreed colony. The animals were kept free of

pathogens and treated in compliance with standardized

institutional guidelines. They were housed in solid

stainless-steel cages. Room temperature ranged from

21 to 25 

 

°

 

C, and the photoperiod consisted of 12 h of

light and 12 h of dark (lights on at 06:00 h). The animals

were fed on a pelleted and sterilized commercial stock

diet containing proteins (23%), carbohydrates (44%),

lipids (11%), water (8%), fibre (5%), ash (5%), minerals

(3%) and vitamin mixture (1%).

When the rats reached adulthood (70 days), they

were mated overnight. Pregnant rats were isolated and

fed 

 

ad libitum

 

. At birth, pups were randomly assigned

to one of two groups. (1) 

 

Control

 

: the animals of the

parental generation (P) received stock diet 

 

ad libitum

 

from weaning (21 days old) to sampling (100 days old).

(2) 

 

Undernourished

 

: pregnant rats were submitted

to nutritional restriction during gestation (75% of daily

food intake of a control dam aged-matched, pair-

feeding technique). Their offspring constituted the 

 

first

filial

 

 (F1). Because it is well known that diet restriction

during lactation substantially alters the mother’s

behaviour, the mothers ate the stock diet 

 

ad libitum

 

and the ‘overcrowding method’ was adopted at this

period (12 pups per litter instead of the usual eight)

to ensure undernutrition. Overcrowding has been

frequently employed in several studies to produce body

growth retardation (Widdowson & McCance, 1963;

Rajanna et al. 1984; Cesani et al. 2003). After weaning,

the animals were fed on 75% of the food eaten by their

control peers. F1 adult females were mated to give

birth to the 

 

second filial

 

 (F2). The F2 animals received

the same treatment as the F1 animals.

 

Measurements

 

Approximately 20 males and 20 females of each genera-

tion were chosen randomly from a larger group and

X-rayed every 10 days from 20 to 100 days of age in

order to obtain the longitudinal data of each animal

(Table 1).

Light-ether anaesthesia was given during the proce-

dure. Once the rats were sedated they were orientated

with a cephalostat and radiographed in dorsal–ventral

and lateral planes using a Siemens Heliophos 4 from

the Servicio de Diagnóstico por Imágenes at 240 mA/

125 kV. Shooths were regulated at 100 mA, 0.02 seg,

40–50 kW (according to the age of the animal). A 110-

cm focus-film (AGFA Mamoray MR5-II, 18 

 

×

 

 24 cm)

distance was used to reduce the magnification effect,

calculated as MgC = Bx/Ax, where MgC is the magnifica-

tion coefficient, Ax a variable measured on the 100th-

day radiograph and Bx the same variable measured

on the skull (Pucciarelli et al. 2001). The following

measurements were taken on each radiograph using a

Fowler Max-Cal Digitrix caliper (0.01 mm accuracy)

(Figs 1 and 2):

Table 1 Samples and treatments

Generation Treatment Males Females Total

Parental (P) normal nutrition (control) 20 21 41
First filial (F1) intergenerational undernutrition 22 20 42
Second filial (F2) intergenerational undernutrition 20 22 42
Total 62 63 125
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Fig. 1 Radiograph of a rat skull in dorsal–ventral (a) and lateral (b) planes showing neurocranial measurements.

Fig. 2 Radiograph of a rat skull in dorsal–ventral (a) and lateral (b) planes showing splanchnocranial measurements.
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1

 

Length, width and height of major components: neuro-

cranium (Nl, Nw, Nh) and splanchnocranium (Sl, Sw, Sh).

 

2

 

Length, width and height of minor components of the

neurocranium: anterior-neural (ANl, ANw, ANh), middle-

neural (MNl, MNw, MNh), posterior-neural (PNl, PNw,

PNh), otic (OTl, OTw, OTh); and of the splanchnocranium:

respiratory (Rl, Rw, Rh), masticatory (Ml, Mw, Mh) and

alveolar (Al, Aw, Ah).

Intraobserver repeatability was assessed by remeasur-

ing 20 randomly selected cases per age (15% of the

total sample). All measurements were made by one

author (M.F.C.), which precluded interobserver differ-

ences. The Dahlberg statistic was used: 

 

√Σ

 

 d

 

2

 

/2

 

n

 

, where

 

d

 

2

 

 are the quadratic differences between pairs of repeated

measurements and 

 

n

 

 is the number of pairs of measure-

ments. This statistic is expressed in millimetres and

can be interpreted as the average disparity between

the measurement sessions. Intraobserver error was less

than 0.1 mm for all variables.

To estimate the size variations of major and minor

components by age and sex, volumetric indices were

calculated as follows (Cesani, 2004):

neurocranial index (NI) = 3

 

√

 

(Nl*Nw*Nh)

anterior-neural index (ANI) = 3

 

√

 

(ANl*ANw*ANh)

middle-neural index (MNI) = 3

 

√

 

(MNl*MNw*MNh)

posterior-neural index (PNI) = 3

 

√

 

(PNl*PNw*PNh)

otic index (OTI) = 3

 

√

 

(OTl*OTw*OTh)

splanchnocranial index (SI) = 3

 

√

 

(Sl*Sw*Sh)

respiratory index (RI) = 3

 

√

 

(Rl*Rw*Rh)

masticatory index (MI) = 3

 

√

 

(Ml*Mw*Mh)

alveolar index (AI) = 3

 

√

 

(Al*Aw*Ah)

The normality of distributions was assessed by the one-

sample Kolmogorov–Smirnov test. This indicated that

36% of the variables were non-normal, compelling

us to employ the non-parametric Kruskal–Wallis (K-W)

test for the factors significance, and the two-sample

Kolmogorov–Smirnov (K-S) test for the comparison

between generations. Statistical procedures were per-

formed by use of the Systat 7.0 and SPSS 7.5 programs.

Percentage differences between means (PDM) were

calculated in order to obtain standardized differences

between generations, according to the formula:

PDM = 100 * (

 

X

 

1

 

 

 

−

 

 

 

X

 

2

 

)/

 

X

 

2

 

For instance, 

 

X

 

1

 

 = mean value of F1 and 

 

X

 

2

 

 = mean value

of P. If we compare F1-P and PDM

 

NI

 

 = 

 

−

 

10, this indicates

that NI in F1 is 10% smaller than in P. This standardiza-

tion method has been frequently employed (see

Cesani et al. 2003). In its current form, it reduces any

difference to a percentage value, which cannot be

affected by the magnitude of the variables or by the

sign of the differences.

 

Results

 

Tables 2 and 3 show the means and standard deviations

in males and females, respectively.

The Kruskal–Wallis test showed significant effects of

age, sex and generation factors in all the indices, allow-

ing us to make intergroup comparisons of each of the

analysed factors (Table 4).

 

F1–P comparison

 

In males and females, the neurocranium and all of its

minor components were significantly different between

F1 and P. Significant differences in SI were found between

males and females. However, differences in the minor

components were dependent on the sex. In males, RI

showed significant differences from 40 days of age, MI

at 20–80 and 100 days, and AI at 20 and 40–100 days.

In females, there were significant differences in RI at

20–50 and 90 days of age, MI at all ages, and AI at 50–

70 and 90–100 days (Table 5).

PDM values were negative in all cases, indicating that

F1 was smaller than P. For NI, these differences increased

with age, whereas for SI and the minor components they

were more uniform across the ages (Table 5).

 

F2–F1 comparison

 

In males, differences were found in NI at 20 and 90–100

days. Neural minor components showed differences at

30–100 (ANI), 40–70 and 90 (MNI), 40–50 (PNI), and 20

and 40–90 days of age (OTI). Splanchnocranial indices

showed differences at 80–100 (SI), 70–100 (RI), 60 and

80–100 (MI), and 50–60 and 90–100 days of age (AI)

(Table 6).

In females, differences between filial generations in

NI were found at the older ages (60–100). By contrast,

differences were noticed in ANI at all ages, MNI at

40–100, PNI at 30–90 and OTI at 30–100 days. In the

splanchnocranium, SI showed differences at 40 and

100 days, RI at 70 and 90–100, and MI at 30–40 days.

There were no differences in AI (Table 6).
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Both negative and positive PDM values were found,

indicating that F2 was smaller than F1 and vice versa. In

males, PDMs were negative in NI and ANI and positive

in the remaining neurocranial minor components. In

the splanchnocranium, all the differences were negative.

In females, PDM values were negative in NI and MNI

(from 70 days of age) and positive in ANI, PNI and

OTI. The splanchnocranium of F1 and F2 was similar

(Table 6).

 

Discussion

 

Intergenerational undernutrition modified both

neurocranial and splanchnocranial growth. Previous

studies have found facial components to be more

strongly influenced by epigenetic factors than those of

the neurocranium (Pucciarelli, 1981; Fields, 1991; Miller

& German, 1999) and the latter tends to be more stable

because of its functional relevance (Deter et al. 1995;

Dressino & Pucciarelli, 1997; Oyhenart et al. 2003). This

phenomenon may be explained by the growth pattern

of the mammalian skull, in which facial structures mature

slower than neurocranial structures (Moss & Baer, 1956).

At birth, the neurocranium has already completed

most of its growth, and the viscerocranium grows more

rapidly (Clark & Smith, 1993). In fact, in a previous study

we found that the first filial, undernourished at wean-

ing, exhibited a greater growth retardation of the face

than that of the neurocranium. However, in the second

generation, pups of which were undernourished 

 

in utero

 

and onwards, the neurocranium was relatively more

affected than the face (Cesani et al. 2003). The rela-

tionship between the two major components (relative

growth) showed significant growth retardation in

F1 compared with P (Fig. 3). NI was significantly more

reduced than SI (9.1 vs. 3.1%, respectively). This confirms

Table 2 Means (M) and standard deviations (SD) in males

Age (days)

20 30 40 50 60 70 80 90 100 

M SD M SD M SD M SD M SD M SD M SD M SD M SD

Generation P
NI 14.5 0.2 15.3 0.9 16.0 0.4 16.8 0.4 17.2 0.4 17.7 0.4 18.0 0.4 18.5 0.4 18.8 0.5
ANI 7.3 0.2 7.9 0.2 8.9 0.1 9.7 0.1 9.7 0.1 10.0 0.1 10.1 0.1 10.1 0.1 10.4 0.1
MNI 8.7 0.2 9.8 0.3 10.2 0.3 10.8 0.2 11.0 0.2 11.2 0.2 11.4 0.2 11.6 0.2 11.9 0.3
PNI 7.5 0.1 7.7 0.1 8.1 0.1 8.3 0.1 8.4 0.1 8.4 0.1 8.4 0.1 8.5 0.1 8.7 0.1
OTI 5.3 0.1 5.5 0.1 5.9 0.0 6.2 0.2 6.3 0.2 6.4 0.2 6.4 0.2 6.4 0.2 6.6 0.2
SI 8.5 0.3 9.5 0.3 10.7 0.3 11.5 0.2 12.1 0.3 12.7 0.3 13.1 0.3 13.4 0.3 13.7 0.3
RI 6.1 0.2 6.8 0.2 7.7 0.2 8.3 0.2 8.7 0.2 9.1 0.2 9.3 0.2 9.6 0.2 9.9 0.2
MI 6.4 0.2 7.3 0.2 8.4 0.2 9.1 0.2 9.8 0.2 10.1 0.3 10.4 0.2 10.8 0.3 11.4 0.3
AI 6.6 0.3 7.3 0.3 8.1 0.2 8.5 0.2 8.9 0.3 9.2 0.3 9.6 0.3 9.9 0.3 10.0 0.3

First filial F1
NI 14.1 0.2 14.7 0.2 15.2 0.2 15.6 0.2 16.0 0.2 16.3 0.2 16.6 0.2 16.9 0.2 17.0 0.3
ANI 6.4 0.2 7.4 0.2 7.6 0.2 7.8 0.2 8.6 0.1 8.8 0.1 9.3 0.1 9.5 0.1 9.6 0.1
MNI 8.9 0.1 9.2 0.2 9.4 0.2 9.6 0.2 9.9 0.3 10.1 0.2 10.3 0.1 10.4 0.2 10.7 0.3
PNI 7.1 0.1 7.1 0.1 7.2 0.1 7.3 0.1 7.7 0.1 7.7 0.1 7.8 0.3 8.0 0.3 7.9 1.8
OTI 4.5 0.1 4.9 0.2 5.0 0.2 5.0 0.2 5.2 0.3 5.2 0.3 5.4 0.2 5.5 0.2 5.7 0.2
SI 8.1 0.3 9.3 0.3 10.2 0.3 10.9 0.2 11.6 0.3 12.0 0.3 12.4 0.2 12.8 0.3 13.2 0.2
RI 6.0 0.2 6.7 0.2 7.4 0.1 7.9 0.1 8.3 0.1 8.7 0.1 8.9 0.1 9.2 0.2 9.5 0.1
MI 6.0 0.2 6.8 0.3 7.8 0.2 8.6 0.3 9.2 0.2 9.7 0.2 10.1 0.2 10.5 0.2 10.9 0.3
AI 6.2 0.2 7.1 0.2 7.7 0.1 8.2 0.1 8.5 0.1 8.7 0.1 9.0 0.1 9.2 0.2 9.5 0.2

Second filial F2
NI 14.4 0.2 14.9 0.2 15.4 0.1 15.6 0.1 15.9 0.1 16.2 0.1 16.4 0.2 16.5 0.2 16.7 0.2
ANI 6.4 0.1 6.8 0.2 8.2 0.1 8.3 0.1 8.4 0.1 8.5 0.2 8.7 0.2 8.9 0.1 9.1 0.2
MNI 8.9 0.1 9.2 0.1 10.0 0.2 10.1 0.2 10.2 0.0 10.3 0.0 10.5 0.2 10.6 0.2 10.7 0.2
PNI 6.8 0.3 7.1 0.1 7.5 0.1 7.6 0.1 7.7 0.1 7.7 0.1 7.8 0.2 7.9 0.2 8.0 0.2
OTI 4.7 0.0 5.1 0.1 5.7 0.0 5.7 0.0 5.8 0.0 5.8 0.0 5.8 0.0 5.9 0.0 5.9 0.1
SI 8.0 0.3 9.2 0.2 10.0 0.3 10.7 0.3 11.4 0.2 11.8 0.2 12.1 0.1 12.4 0.2 12.9 0.3
RI 5.9 0.2 6.7 0.2 7.2 0.2 7.7 0.2 8.2 0.2 8.4 0.2 8.7 0.2 8.8 0.2 9.2 0.2
MI 6.1 0.3 6.7 0.3 7.7 0.4 8.4 0.2 9.0 0.3 9.4 0.2 9.8 0.2 10.0 0.2 10.5 0.3
AI 6.3 0.3 7.1 0.2 7.6 0.2 8.0 0.2 8.4 0.2 8.6 0.1 8.8 0.2 9.0 0.2 9.2 0.2
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Table 3

 

Means (M) and standard deviations (SD) in females

Age (days)

20 30 40 50 60 70 80 90 100 

M SD M SD M SD M SD M SD M SD M SD M SD M SD

Generation P
NI 14.5 0.1 15.3 0.2 16.0 0.3 16.7 0.2 17.2 0.3 17.6 0.3 17.9 0.3 18.3 0.3 18.6 0.4
ANI 7.2 0.2 7.9 0.2 8.8 0.1 9.5 0.1 9.6 0.1 9.9 0.1 9.9 0.1 9.9 0.1 10.3 0.1
MNI 8.6 0.1 9.6 0.2 10.1 0.2 10.4 0.2 10.6 0.2 10.8 0.2 11.0 0.2 11.1 0.1 11.5 0.2
PNI 7.5 0.1 7.8 0.1 8.1 0.1 8.3 0.1 8.4 0.1 8.4 0.1 8.5 0.1 8.5 0.1 8.6 0.1
OTI 5.4 0.1 5.6 0.1 5.7 0.1 6.0 0.1 6.0 0.1 6.1 0.1 6.1 0.1 6.1 0.0 6.4 0.0
SI 8.4 0.2 9.4 0.2 10.5 0.3 11.2 0.2 11.7 0.3 12.0 0.3 12.4 0.2 12.7 0.2 13.0 0.2
RI 6.1 0.2 6.7 0.2 7.5 0.2 7.9 0.1 8.3 0.2 8.5 0.2 8.7 0.2 8.9 0.2 9.1 0.1
MI 6.5 0.2 7.3 0.2 8.3 0.3 9.0 0.2 9.6 0.2 9.9 0.1 10.1 0.1 10.4 0.2 10.8 0.2
AI 6.4 0.3 7.3 0.2 7.8 0.2 8.3 0.2 8.5 0.2 8.8 0.2 8.9 0.2 9.1 0.2 9.3 0.2

First filial F1
NI 14.0 0.1 14.5 0.2 14.9 0.2 15.4 0.2 15.8 0.3 16.1 0.3 16.4 0.2 16.7 0.2 16.9 0.3
ANI 6.2 0.1 6.3 0.2 6.6 0.2 6.8 0.2 7.2 0.1 7.3 0.2 7.7 0.2 7.9 0.3 8.5 0.2
MNI 8.8 0.1 9.0 0.1 9.1 0.0 9.3 0.2 9.6 0.2 10.2 0.2 10.3 0.2 10.4 0.2 10.6 0.2
PNI 7.0 0.1 7.0 0.1 7.1 0.1 7.2 0.1 7.3 0.1 7.3 0.1 7.4 0.1 7.5 0.1 7.7 0.1
OTI 4.8 0.1 4.8 0.2 4.8 0.1 4.8 0.2 4.9 0.2 4.9 0.1 5.0 0.1 5.2 0.0 5.3 0.0
SI 7.8 0.3 8.9 0.3 9.9 0.2 10.4 0.2 11.1 0.2 11.6 0.2 11.9 0.2 12.2 0.2 12.5 0.2
RI 5.8 0.2 6.5 0.3 7.1 0.2 7.6 0.2 8.1 0.2 8.4 0.2 8.6 0.1 8.8 0.0 9.0 0.1
MI 5.5 0.2 6.5 0.2 7.4 0.2 8.3 0.2 8.9 0.2 9.2 0.2 9.4 0.2 9.7 0.2 10.0 0.2
AI 6.4 0.2 7.0 0.3 7.6 0.2 8.0 0.2 8.4 0.5 8.5 0.1 8.7 0.2 8.8 0.2 9.0 0.0

Second filial F2
NI 14.1 0.2 14.6 0.2 14.7 0.2 15.3 0.2 15.6 0.1 15.8 0.2 16.0 0.2 16.1 0.2 16.3 0.2
ANI 6.4 0.1 6.6 0.1 8.1 0.1 8.1 0.1 8.1 0.1 8.2 0.1 8.2 0.1 8.5 0.1 8.9 0.1
MNI 8.8 0.0 9.0 0.0 9.7 0.0 9.8 0.0 9.9 0.0 10.0 0.0 10.1 0.1 10.2 0.1 10.2 0.1
PNI 7.0 0.1 7.2 0.1 7.4 0.1 7.4 0.1 7.5 0.1 7.5 0.0 7.5 0.0 7.6 0.0 7.6 0.0
OTI 4.7 0.1 5.0 0.0 5.5 0.0 5.6 0.0 5.6 0.0 5.6 0.0 5.6 0.0 5.7 0.0 5.7 0.0
SI 8.0 0.2 9.0 0.2 10.2 0.2 10.6 0.2 11.1 0.1 11.4 0.2 11.7 0.2 12.1 0.2 12.3 0.1
RI 5.9 0.2 6.6 0.2 7.3 0.1 7.7 0.2 8.0 0.1 8.1 0.1 8.4 0.2 9.0 2.1 8.8 0.1
MI 6.3 0.2 6.9 0.2 7.7 0.2 8.4 0.2 8.9 0.2 9.1 0.2 9.5 0.3 9.7 0.2 10.1 0.2
AI 6.3 0.3 7.1 0.2 7.7 0.2 8.0 0.2 8.3 0.2 8.5 0.2 8.7 0.2 8.8 0.2 9.1 0.2

 

Table 4

 

Kruskal–Wallis test for factors of significance on the 
dependent variables

Indices

Age† Sex‡ Generation§ 

 

H P H P H P

 

NI 805.7 ** 17349.5 ** 224.1 **
ANI 603.1 ** 19861.6 ** 339.4 **
MNI 749.9 ** 18305.6 ** 207.5 **
PNI 411.4 ** 19056.5 ** 521.6 **
OTI 380.5 ** 18587.8 ** 584.9 **
SI 1016.1 ** 182669.5 ** 40.8 **
RI 1011.9 ** 18588.5 ** 31.3 **
MI 1009.3 ** 17917.4 ** 49.2 **
AI 991.2 ** 18069.7 ** 39.3 **

**

 

P <

 

 0.01.
†Nine levels (20–30–40–50–60–70–80–90–100 days old); ‡two levels 
(males–females); §three levels (P, F1 and F2).

Fig. 3 Average growth retardation of the major functional 
cranial components in F1 (black bars) and F2 (white bars). 
Negative PDMs indicate that F1 and F2 < P.
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Table 5

 

Percentage differences between means (PDM) and two-samples Kolmogorov–Smirnov test (

 

z

 

) between F1and P in males and females

Age (days)

20 30 40 50 60 70 80 90 100

PDM

 

z P

 

PDM

 

z P

 

PDM

 

z P

 

PDM

 

z P

 

PDM

 

z P

 

PDM

 

z P

 

PDM

 

z P

 

PDM

 

z P

 

PDM

 

z P

 

Neurocranium

 

NI
Males

 

−

 

2.7 2.8 *

 

−

 

4.4 3.2 *

 

−

 

4.9 2.9 *

 

−

 

6.9 3.2 *

 

−

 

7.1 3.2 *

 

−

 

7.9 3.2 *

 

−

 

8.0 3.2 *

 

−

 

8.7 3.2 *

 

−

 

9.4 3.2 *
Females

 

−

 

3.7 3.2 *

 

−

 

5.6 3.2 *

 

−

 

6.8 3.2 *

 

−

 

8.1 3.2 *

 

−

 

8.0 3.2 *

 

−

 

8.4 3.2 *

 

−

 

8.2 3.2 *

 

−

 

8.7 3.2 *

 

−

 

8.9 3.2 *
ANI

Males

 

−

 

12.8 3.2 *

 

−

 

6.4 2.9 *

 

−

 

14.6 3.2 *

 

−

 

19.3 3.2 *

 

−

 

11.5 3.2 *

 

−

 

11.9 3.2 *

 

−

 

7.2 3.2 *

 

−

 

5.8 3.2 *

 

−

 

7.1 3.2 *
Females

 

−

 

13.6 3.2 *

 

−

 

19.4 3.2 *

 

−

 

24.8 3.2 *

 

−

 

28.5 3.2 *

 

−

 

25.1 3.2 *

 

−

 

26.5 3.2 *

 

−

 

22.0 3.2 *

 

−

 

20.4 3.2 *

 

−

 

17.8 3.2 *
MNI

Males 2.3 1.9 *

 

−

 

5.6 2.8 *

 

−

 

7.6 3.2 *

 

−

 

11.0 3.2 *

 

−

 

10.0 3.2 *

 

−

 

10.3 3.2 *

 

−

 

10.1 3.2 *

 

−

 

10.3 3.2 *

 

−

 

10.3 3.2 *
Females

 

−

 

3.0 2.9 *

 

−

 

6.4 3.2 *

 

−

 

9.7 3.2 *

 

−

 

10.7 3.2 *

 

−

 

10.1 3.2 *

 

−

 

5.8 3.2 *

 

−

 

5.6 2.7 *

 

−

 

6.3 3.1 *

 

−

 

8.0 3.2 *
PNI

Males −5.6 3.2 * −7.9 3.2 * −10.7 3.2 * −12.5 3.2 * −8.0 3.2 * −8.1 3.2 * −7.5 3.2 * −5.6 2.8 * −8.8 2.9 *
Females −7.6 3.2 * −9.9 3.2 * −12.7 3.2 * −13.6 3.2 * −13.6 3.2 * −13.7 3.2 * −12.4 3.2 * −11.3 3.2 * −11.5 3.2 *

OTI
Males −15.2 3.2 * −10.9 3.2 * −15.8 3.2 * −20.4 3.2 * −18.1 3.2 * −18.6 3.2 * −16.5 3.2 * −14.3 3.2 * −13.2 3.2 *
Females −12.4 3.2 * −13.3 3.2 * −16.1 3.2 * −18.7 3.2 * −19.2 3.2 * −19.9 3.2 * −18.4 3.2 * −14.9 3.2 * −16.7 3.2 *

Splanchnocranium
SI

Males −5.1 2.2 * −2.9 1.5 −4.5 2.5 * −5.2 2.9 * −4.3 2.2 * −5.2 2.6 * −5.1 2.9 * −4.2 2.5 * −3.5 2.3 *
Females −7.0 3.0 * −5.5 2.3 * −6.3 2.9 * −6.5 3.2 * −5.2 2.7 * −3.5 2.3 * −4.0 2.4 * −3.9 2.9 * −3.4 2.7 *

RI
Males −2.0 1.1 −1.0 0.8 −3.9 2.2 * −5.0 3.1 * −4.4 2.9 * −4.7 2.8 * −4.3 2.9 * −4.1 2.5 * −4.1 2.7 *
Females −4.0 2.0 * −3.1 1.9 * −4.9 2.4 * −3.5 1.9 * −2.2 1.5 −1.5 1.5 −2.1 1.7 −2.1 2.1 * −1.1 1.5

MI
Males −6.1 2.3 * −6.6 2.5 * −6.6 2.8 * −6.5 2.8 * −5.8 2.9 * −4.0 2.6 * −2.9 2.0 * −2.3 1.5 −4.0 2.3 *
Females −10.3 2.9 * −10.9 3.2 * −10.6 2.9 * −8.3 3.2 * −7.3 3.2 * −6.8 3.2 * −6.4 3.2 * −6.0 3.1 * −7.6 3.2 *

AI
Males −6.4 1.9 * −3.0 1.6 −4.7 2.6 * −4.1 2.6 * −3.7 2.3 * −5.4 2.6 * −5.5 2.8 * −6.9 2.9 * −5.2 2.6 *
Females 0.0 0.9 −3.2 1.5 −2.4 1.3 −4.2 2.6 * −1.3 1.6 * −4.0 2.3 * −1.9 1.2 −3.5 2.1 * −3.4 2.7 *
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Table 6 Percentage differences between means (PDM) and two-samples Kolmogorov–Smirnov test (z) between F2 and F1 in males and females

Age (days)

20 30 40 50 60 70 80 90 100

PDM z P PDM z P PDM z P PDM z P PDM z P PDM z P PDM z P PDM z P PDM z P

Neurocranium
NI

Males 1.9 2.3 * 1.5 1.7 1.4 1.6 0.1 0.7 −0.7 1.2 −0.7 1.6 −1.2 1.4 −2.1 2.3 * −2.3 2.4 *
Females 0.7 1.2 0.9 1.1 0.2 0.8 −0.5 0.7 1.7 1.9 * −1.9 2.1 * −2.7 2.5 * −3.2 2.8 * −3.9 3.1 *

ANI
Males 0.3 1.3 −8.1 2.8 * 7.4 3.2 * 6.0 2.9 * −1.7 1.8 * −3.9 2.6 * −7.1 3.2 * −6.3 3.2 * −5.5 3.2 *
Females 3.6 2.5 * 3.5 2.1 * 21.9 3.2 * 19.4 3.2 * 13.8 3.2 * 12.4 3.2 * 6.0 3.2 * 7.4 2.8 * 4.9 2.9 *

MNI
Males −0.2 0.5 −0.7 1.0 6.1 3.1 * 4.9 2.9 * 2.7 2.0 * 2.0 2.3 * 2.0 1.6 1.3 1.7 * −0.2 1.1
Females 0.0 0.4 0.4 0.9 6.2 3.2 * 5.4 3.1 * 3.8 3.1 * −1.6 1.7 * −2.5 2.0 * −2.6 2.1 * −3.5 2.3 *

PNI
Males −3.7 1.5 −0.4 1.0 4.7 3.2 * 4.7 3.2 * 0.3 1.2 0.3 1.0 0.0 1.2 −1.5 1.2 1.4 1.7
Females 1.3 1.6 2.4 2.3 * 4.9 3.1 * 3.8 2.8 * 3.3 2.8 * 3.2 2.8 * 1.6 2.3 * 0.8 1.8 * −0.8 1.2

OTI
Males 3.5 2.2 * 3.3 1.5 13.9 3.2 * 14.7 3.2 * 11.8 3.2 * 11.5 3.2 * 8.4 2.8 * 6.2 2.8 * 3.1 1.7
Females −2.1 1.4 3.1 1.8 * 15.0 3.2 * 15.3 3.2 * 15.5 3.2 * 15.6 3.2 * 13.3 3.2 * 9.1 3.2 * 6.4 3.2 *

Splanchnocranium
SI

Males −0.8 0.6 −0.1 0.9 −1.4 0.9 −1.5 1.5 −1.4 1.0 −2.1 1.7 −2.6 2.5 * −3.4 2.5 * −2.7 1.9 *
Females 2.5 1.4 1.4 1.2 3.1 2.0 * 1.9 1.5 0.5 1.4 −1.6 1.5 −1.6 1.2 −0.5 1.0 −1.6 2.0 *

RI
Males −2.0 1.2 −0.1 0.4 −1.6 1.2 −1.8 1.2 −1.9 1.4 −3.1 2.4 * −2.8 2.3 * −3.7 2.6 * −3.0 2.1 *
Females 1.5 0.9 2.2 1.5 2.5 1.4 0.3 0.4 −1.4 1.1 −2.9 2.3 * −2.1 1.6 3.0 1.8 * −2.7 2.5 *

MI
Males 0.3 0.9 −1.5 0.7 −1.2 1.1 −1.4 0.9 −2.2 1.8 * −3.0 1.7 −3.1 2.1 * −5.0 2.8 * −4.3 2.4 *
Females 3.2 1.5 5.8 2.2 * 3.9 2.2 * 1.1 0.9 0.1 0.5 −0.7 0.8 0.1 0.5 −0.3 0.6 1.1 0.9

AI
Males 1.9 0.9 −0.6 0.8 −1.4 1.5 −2.6 2.3 * −2.0 1.9 * −1.6 1.4 −2.0 1.5 −2.8 2.0 * −3.1 1.9 *
Females −1.9 1.3 1.3 1.1 0.8 1.0 0.9 0.8 −1.5 0.8 0.0 0.5 −0.5 0.9 −0.2 1.2 0.3 0.6
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that intrauterine stress may affect neurocranial growth

in spite of its functional implications. By contrast, growth

retardation increased along with undernutrition through

the following generation (F2). However, such growth

restriction was similar in both major components (NI,

3.4%; SI, 2.1%), suggesting a possible adaptive response

to nutritional stress in F2 (Fig. 3).

Nutritional deficit also evoked differential modifica-

tions among minor components. The anterior-neural

and otic components were the most affected, and

all the facial minor components were similarly

retarded in males but not in females, which exhibited

a strong reduction of the masticatory component

(Fig. 4).

Studies in rats with prenatal and postnatal genera-

tional undernutrition have reported reduction of visual

capacity (Galler, 1980), auditive dysfunctions (Stewart

et al. 1973, 1975), disturbed neuronal development

(Gundappa & Desiraju, 1988), and reduction in brain

weight, DNA and brain proteins (Zamenhof et al. 1971;

Resnick & Morgane, 1984). These findings can be related

to the present results in the context of the functional

cranial theory, in which modifications in the skeletal

unit are explained as secondary growth responses to

previous alterations of the functional matrix.

There is some disagreement about the cumulative

effect of generational undernutrition on physical growth

(Zamenhof & Van Marthens, 1978; Hoet et al. 1997;

Pessoa et al. 2000; Orden et al. 2003; Rogers et al. 2003).

Some authors support a progressive impairment of growth

through generations. For example, Resnick & Morgane

(1984) found that a protein restriction in the first

generation becomes more severe in the second genera-

tion, based on brain weight at birth among other

parameters. Other authors argue against this idea;

Zamenhof & van Marthens (1978), who studied six

generations of rats, did not find cumulative effects on

growth. In our study, both neurocranial and splanch-

nocranial sizes were smaller in F2 than in F1, adding

support to the cumulative hypothesis. However, such

an effect was not uniform and varied between sexes

and minor components. This cumulative effect in males

was seen in ANI and all the splanchnocranial components,

whereas MNI, PNI and OTI were larger in F2. In females,

MNI and RI showed cumulative growth retardation,

whereas the other components were larger in F2 (Fig. 5).

These differential patterns, which result in modifica-

tions of cranial shape, suggest a kind of ‘carry over’

effect, i.e. a residual mechanical strain resulting from

the linkage between components. This process gives

Fig. 4 Average growth retardation 
of the minor functional cranial 
components: comparison between 
F1 and P. The bars are expressed as 
percentage differences between means 
(PDM). Negative PDMs indicate that 
F1 < P.

Fig. 5 Average growth retardation of 
the minor functional cranial 
components: comparison between F2 
and F1. The bars are expressed as 
percentage differences between means 
(PDM). Negative PDMs (black bars) 
indicate that F2 < F1. Positive PDMs 
(white bars) indicate that F2 > F1.
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experimental support to the well-known principle of

functional interdependence among cranial components

(van der Klaauw, 1948–52). This phenomenon, more

clearly observed within the neurocranium, could be

understood as an adaptive response to demands of the

associated functional matrices.

In summary, intergenerational undernutrition would

produce a cumulative effect on cranial growth. These

results validate previous longitudinal studies and the

application of the functional cranial theory, given that

the expression of growth retardation is dependent on the

age, sex and level of cranial discrimination employed.
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